5. Dépendances et présuppositions

Makefile

La réalisation d'un projet présuppose la réalisation d'étapes préalables. Par exemple la confection d'un journal nécessite la rédaction des acticles qui le constituent. Il est possible de représenter cette dépendance par un graphe:

Chaque nouveau numéro suivra la même organisation.
On peut écrire un fichier de description (Makefile) de la confection du journal:

```
$ART= article1 article2 article3
```

```
maquette : mise_en_page editorial
```

assembler pages editorial

```
editorial :
```

 rediger editorial
 mise_en_page : sommaire illustrations \$ART
ajuster espaces sommaire illustrations \$ART
sommaire : \$ART
lister titres (\$ART)

Au cours de la réalisation d'une maquette, il peut arriver qu'un article soit réécrit. Il n'est pas pour autant nécessaire de refaire les autres articles ; par contre il est probable que le sommaire sera revu (si le titre de l'article est modifié par exemple) ainsi que la mise page; par conséquent il faudra refaire la maquette.

Exemple de pensée par les présupposés

Au moyen de deux récipients dont les capacités respectives sont neuf litres et quatre litres, nous souhaitons disposer d'une quantité d'eau de six litres.
Représentons-nous clairement nos instruments de travail, c'est-à-dire, les deux récipients ${ }^{1}$. Imaginons qu'ils soient cylindriques, de bases égales et de hauteurs neuf et quatre (cf. Fig.5.1).
S'il y avait, sur la surface latérale de chacun d'eux, une graduation aux lignes horizontales également espacées, ce qui donnerait à tout moment la hauteur du niveau de l'eau, notre pro-
blème serait facile. Mais cette graduation n'existant pas, nous sommes encore loin de la solution.

Fig.5.1

Nous ne savons pas encore comment mesurer exactement; mais pourrions-nous mesurer une autre quantité? Faisons des essais, tâtonnons un peu. Nous pouvons remplir complètement le plus grand; si, avec son contenu, nous remplissons alors le petit, il nous reste cinq litres dans le grand. Pouvons-nous également en obtenir six? Vidons à nouveau les deux récipients. Nous pourrions aussi...
Nous agissons ainsi comme la plupart des gens à qui l'on pose ce problème. Partant de deux récipients vides, nous faisons un essai, puis un autre, les vidant et les remplissant à tour de rôle, et, après chaque échec, nous recommençons et cherchons autre chose. En somme, nous progressons, en partant de la situation donnée au début, vers la situation finale désirée, c'est à dire en allant du connu vers l'inconnu. Il se peut qu'après maintes tentatives nous finissions par réussir mais ce sera par hasard.
Que nous demande-t-on? Représentons-nous le plus distinctement possible la situation finale que nous cherchons à atteindre. Imaginons que nous avons là, devant nous, le grand récipient contenant exactement six litres et le petit vide, comme à la figure 5.2. (Partons de ce qui est demandé et admettons que ce que l'on cherche est déjà trouvé).

Fig.5.2

1. Proverbe numéro 1 un petit dessin vaut mieux qu'un grand discours.

À partir de quelle situation précédant immédiatement celle-ci pourrions-nous obtenir la situation finale désirée, comme à la figure 5.2? (Cherchons à partir de quel antécédent le résultat final pourrait être obtenu). Nous pourrions remplir complètement le grand récipient, donc, y verser neuf litres; mais il faudra en retirer trois litres exactement. Pour cela ..., il faudrait avoir déjà un litre dans le petit. Voilà l'idée! (Cf. Fig. 5.3);

Fig.5.3

Mais comment atteindre la situation ainsi trouvée qu'illustre la figure 5.2.3? (Cherchons à nouveau quel pourrait être l'antécédent de cet antécédent). Étant donné qu'il est toujours possible de re-transvaser un récipient dans le récipient d'origine, la situation de la figure 5.3 est équivalente aux situations des figures 5.4 et 5.5.

Fig.5.4
Il est facile de reconnaître que, si l'on obtient l'une quelconque des situations des figures 5.2 , 5.3 et 5.4 , on obtiendra aussi bien les deux autres; mais il n'est pas si facile de tomber juste sur la situation de la figure 5.4, à moins de l'avoir déjà rencontrée, de l'avoir vue accidentellement, au cours d'une de nos précédentes tentatives. En multipliant les expériences avec les deux récipients, nous pouvons avoir réalisé quelque chose d'analogue et nous rappeler, au bon moment, que la situation de la figure 5.4 peut se présenter comme elle est suggérée à la figure suivante : en remplissant le grand

Fig.5.5
récipient, puis en vidant deux fois de suite quatre litres dans le petit et de là dans le récipient d'origine, nous rencontrons finalement quelque chose de déjà connu; ainsi, par la méthode de l'analyse, par raisonnement régressif nous avons découvert la succession d'opérations appropriée.

Fig.5.6

Il est vrai que cela s'est fait à rebours, mais nous n'avons plus qu'à renverser le processus en partant du dernier point atteint dans notre analyse. Nous faisons les opérations suggérée par la figure 5.5 et obtenons la figure 5.4, puis nous passons à la figure 5.3 , de là à la figure 5.2 et finalement à la figure 5.1. En revenant sur nos pas, nous arrivons finalement à trouver ce qui nous était demandé. ${ }^{2}$
Il y a certainement dans cette méthode quelque chose d'assez profond. L'obligation de sinuer, de s'éloigner du but, en revenant en arrière, de ne pas prendre la route qui mène directement au résultat désiré entraîne certaines difficultés, dans le domaine de l'esprit. Pour découvrir la succession d'opérations appropriées, notre intellect doit suivre un ordre exactement à l'inverse de l'ordre réel. Il n'est nul besoin de génie pour résoudre un problème en revenant en arrière. Il suffit de se concentrer sur le but désiré, de se représenter la situation finale que l'on veut obtenir. À partir de quelle situation précédente pourrionsnous y parvenir? Il est essentiel de se poser cette question et, ce faisant, l'on revient en arrière.

[^0]
[^0]: 2. C'est à Platon que la tradition grecque attribuait la découverte de la méthode d'analyse.
